$$0 \leq F(x) \leq 1 \tag{2B}$$ |
$$F(a) \leq F(b) \tag{2C}$$ |
$$\lim_{x \rightarrow -\infty} F(x) = 0 \tag{2D}$$ |
$$\lim_{x \rightarrow +\infty} F(x) = 1 \tag{2E}$$ |
$$P( a < X \leq b ) = F(b) - F(a) \tag{2F}$$ |
$$P( a \leq X < b ) = F(b) - F(a) + P( X = a ) - P( X = b ) \tag{2G}$$ |
$$P( a \leq X \leq b ) = F(b) - F(a) + P( X = a ) \tag{2H}$$ |
$$P( a < X < b ) = F(b) - F(a) - P( X = b ) \tag{2I}$$ |
i | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
xi | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 |
P( X = xi ) = p(xi) | 0,028 | 0,056 | 0,083 | 0,111 | 0,139 | 0,167 | 0,139 | 0,111 | 0,083 | 0,056 | 0,028 |
P( X = xi ) acum = F(xi) | 0,028 | 0,083 | 0,167 | 0,278 | 0,417 | 0,583 | 0,722 | 0,833 | 0,917 | 0,972 | 1,000 |
APOSTOL, Tom M. Calculus. USA: Blaisdell, 1969. GRINSTEAD, Charles M. SNELL, J. Laurie. Introduction to Probability. NIST/SEMATECH e-Handbook of Statistical Methods. http://www.itl.nist.gov/div898/handbook/. |